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Instabilities of R nyi Entropies 
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We show that for systems with a large number of microstates R~nyi entropies do 
not represent experimentally observable quantities except the R~nyi entropy that 
coincides with the Shannon entropy. 
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R6nyi entropies (1) are mixing homomorphic functions (2) which are additive 
with respect to the composition of statistically independent systems. They 
are characterized by a real parameter a > 0. Their definition reads as 
follows: 

In ~ (pi) a if a v a 1 1 

I , ~ ( p )  - 1 - a i = 1  

and (1) 

I i ( p )  = lira I s (p )  = - ~ Pi In Pi 
a--~l i= 1 

where Pi is the probability of the microstate i according to the probability 
assignment p defined on the set of n microstates. The R6nyi entropy with 
a = 1 coincides with the Shannon entropy. For probability assignments that 
take the constant value 1 / m  on a subset of m elements all, R6nyi entropies 
have the same value 

I , ~ ( p )  = lnm 

which coincides with the Boltzmann entropy (up to the Boltzmann factor), 
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if one considers the subset of m microstates to represent a macrostate. In 
the special case m = n one gets the maximal entropy of the space of n 
states: 

/max = In n (2) 

In general, however, Rrnyi  entropies differ from each other and the 
question arises which of these functions might possibly be related to some 
experimentally observable quantity. 

A necessary condition for a quantity G to be observable is that their 
values G(x) do not change dramatically if the state x of the system in 
consideration is changed by an unobservably small amount  $x. The states x 
of our problem are the probability assignments p on the set of n micro- 
states. Using mathematical  statistics one can show (3) that the experimental 
effort necessary to distinguish between two probability assignments p and 
p '  with an appreciable reliability is related to the l 1 distance 

lip-p'll, = I?,-?:I 
i=I 

in a way that is independent of n. Therefore we ask the following question: 

For which values of a can one find for every e > 0 a 6, > 0 such that 
for all n and for all p, p '  one has 

llo(P ') - I ~ ( P ) l  < 
I1:'-pill < 8 , ~  /max 

We will show that this is possible for a = 1 and impossible for any other 
value of a. 

1. T h e  C a s e  a = 1. Consider the functions 

A (S, p) = ~ (,p~ - e-O + 
i=I 

where x + = max(x ,  0}. We remark in passing that mixing character (2) can 
be defined with the aid of these functions: 

m [ p ' ]  >- m E p ] ~ v s  > o: A(S,p') <. A(S,p) 

These functions have the following properties: 

IA(S,?)-A(S,?')[ ~ I I ? - p ' l l ,  for all S />  0 (3) 

(1 - e x p [ - S  + Inn] )  + < A(S,p) < 1 (4) 

Ii(p)= - I  + foo~[1- A(S,p)]dS (5) 
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Equation (5) yields 

I l l (p ) -  II(P')l = fo~[A(S,P) - A(S,e')]dS 

F a + l n n  
<Jo IA(S'p)-A(S'P')IaS 

+ f~l~ IA (s, p ) -  A(s, p')I dS 

where a/> - i n  n is arbitrary. Supposing a t> 0 we apply inequality (3) to 
the first integral and inequality (4) to the second one: 

I l l ( p )  -- I i ( p t ) l  <l[ e -- p'll,(a + Inn) + e -a 

Now we choose a >/0 so that the right-hand side becomes a minimum. 
For liP-P'I[~ < 1 the minimum shows up at a = - l n l [ p - P ' I [ .  So, for 
l ip -P ' [ I I  < 1 one has 

I I , ( P ) -  II(P')[ < l i p -  P'[[1( 1 + I n n ) -  l i p -  P ' l l l ln[ lp-p '[[ l  

f ( x ) = - x l n x  is an increasing nonnegative function in the interval 
[0, 1/el, so one has 

I l l ( p )  --  I i ( p ' ) l  ~< 8(1  + Inn) - 81n6 

for lip -p ' l l l  < 8 < 1/e.  Equation (2) gives with n/> 2 

[II(p) Ii(p')] - - -  8 ~ 1  1) 81n8 
8\ ~ lnn ln2 

~ + 1) ~ln~ ~ ( + 
/ms 

if lip -P ' II  < 8 < 1/e.  Thus, it is clear that one can find an appropriate 8~ 
for every E, because the right-hand side is a continuous function of 8 
approaching 0 for 8-9 0. 

2. T h e  C a s e  a > 1. Let p and p'  be defined as 

1 (1  - 8~i 
P i -  ( n -  1) ) 

P ; = ~ 6 1 i + ( l - ~ ) ( n  1~_1)(1-81i) 

One has lip -P'[[1 = 6 and 

, 1 In ~ i  P7 
I~(p) - I,~(p ) - 1 -  a 2s  pj ~ 

_ [ ( n - 1 ) ' - " J 1  in 
] - -  a: ( 8 / 2 )  'x + ( n  -- 1)m-'x(1 --  8 / 2 )  '~ 
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For large n the asymptotic behavior of this difference is 

( n -  1) ~-~ 
I s ( p ) -  I ~ ( p ' )  ~ 1 In 

1 - c~ ( 8 / 2 )  ~ 

and thus 

lim - -  - -  1 
n-~oo /max 

no matter how small 8 might be. 

3. The C a s e  ct < 1. We choose 

( 8)81i + 1 8 ( 1 _  8,~ ) pi = 81i, p'i = 1 - -  -~ n - 1 2 

which gives II p i  - pill = 8 and 

, , 1 In 1 -  ~ + ( n - 1 )  1-~ i ~ ( ?  ) - z ~ ( ? )  = I o ( ?  ) - l - ~ 

The asymptotic behavior of this difference for large n is 

AI~ ,,cS~ 1 _ ~ 1  a ln[(n - 1 ) ] - ~ ( ~ ) ~  ] 

and thus 

lim ]A/~I - 1 
n~oe Ima x 

no matter how small 6 might be. The first counterexample illustrates that 
Rtnyi  entropies with a > 1 overestimate a high peak of probability. There- 
fore it can occur that the whole rest is completely ignored despite the fact 
that its overall probability is practically 1 and that it contains all relevant 
information. The second counterexample illustrates that Rtnyi  entropies 
with a < 1 overestimate a large number of occupied states even if their 
overall probability is so small that they are of no physical relevance. 
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